History of mechanical ventilator 


                

The history of mechanical ventilation begins with various versions of what was eventually called the iron lung, a form of noninvasive negative pressure ventilator widely used during the polio epidemics of the 20th century after the introduction of the “Drinker respirator” in 1928, improvements introduced by John Haven Emerson in 1931,  and the Both respirator in 1937. Other forms of noninvasive ventilators, also used widely for polio patients, include Biphasic Cuirass Ventilation, the rocking bed, and rather primitive positive pressure machines.

In 1949, John Haven Emerson developed a mechanical assister for anesthesia with the cooperation of the anesthesia department at Harvard University. Mechanical ventilators began to be used increasingly in anesthesia and intensive care during the 1950s. Their development was stimulated both by the need to treat polio patients and the increasing use of muscle relaxants during anesthesia. Relaxant drugs paralyze the patient and improve operating conditions for the surgeon but also paralyze the respiratory muscles.

In the United Kingdom, the East Radcliffe and Beaver models were early examples, the latter using an automotive wiper motor to drive the bellows used to inflate the lungs. Electric motors were, however, a problem in the operating theaters of that time, as their use caused an explosion hazard in the presence of flammable anesthetics such as ether and  cyclopropane .

In 1952, Roger Manley of the Westminster Hospital, London, developed a ventilator which was entirely gas driven, and became the most popular model used in Europe. It was an elegant design, and became a great favorite with European anesthetists for four decades, prior to the introduction of models controlled by electronics. It was independent of electrical power, and caused no explosion hazard. The original Mark I unit was developed to become the Manley Mark II in collaboration with the Blease company, who manufactured many thousands of these units. Its principle of operation was very simple, an incoming gas flow was used to lift a weighted bellows unit, which fell intermittently under gravity, forcing breathing gases into the patient’s lungs. The inflation pressure could be varied by sliding the movable weight on top of the bellows. The volume of gas delivered was adjustable using a curved slider, which restricted bellows excursion. Residual pressure after the completion of expiration was also configurable, using a small weighted arm visible to the lower right of the front panel. This was a robust unit and its availability encouraged the introduction of positive pressure ventilation techniques into mainstream European anesthetic practice.

The 1955 release of Forrest Bird’s “Bird Universal Medical Respirator” in the United States changed the way mechanical ventilation was performed, with the small green box becoming a familiar piece of medical equipment.  The unit was sold as the Bird Mark 7 Respirator and informally called the “Bird”. It was a pneumatic device and therefore required no electrical power source to operate.

Intensive care environments around the world revolutionized in 1971 by the introduction of the first  Servo 900 ventilator Elema – Schonander . It was a small, silent and effective electronic ventilator, with the famous SERVO feedback system controlling what had been set and regulating delivery. For the first time, the machine could deliver the set volume in volume control ventilation.

Ventilators used under increased pressure (hyperbaric) require special precautions and few ventilators can operate under these conditions. In 1979, Sechrist Industries introduced their Model 500A ventilator which was specifically designed for use with hyperbaric chambers.

In 1991 the SERVO 300 ventilator series was introduced. The platform of the SERVO 300 series enabled treatment of all patient categories, from adult to neonate, with one single ventilator. The SERVO 300 series provided a completely new and unique gas delivery system, with rapid flow-triggering response.

In 1999 the LTV (Laptop Ventilator) Series was introduced into the market. The new ventilator was significantly smaller than the ventilators of that time weighing ~14 lbs and around the size of a laptop computer. This new design kept the same functionality of the in hospital ventilators, while now opening up a world of opportunity of mobility for the patients.

A modular concept, meaning that the hospital has one ventilator model throughout the ICU department instead of a fleet with different models and brands for the different user needs, was introduced with SERVO-i in 2001. With this modular concept the ICU departments could choose the modes and options, software and hardware needed for a particular patient category.

mechanical ventilator

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Blog at WordPress.com.

Up ↑

%d bloggers like this: